Continuity (P.124)

DEFINITION Continuous at a Point

Interior point: A function $y=f(x)$ is continuous at an interior point c of its domain if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Endpoint: A function $y=f(x)$ is continuous at a left endpoint \boldsymbol{a} or is continuous at a right endpoint \boldsymbol{b} of its domain if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { or } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b), \text { respectively }
$$

Continuity Test

A function $f(x)$ is continuous at $x=c$ if and only if it meets the following three conditions.

1. $f(c)$ exists $(c$ lies in the domain of $f)$
2. $\lim _{x \rightarrow c} f(x)$ exists $\quad(f$ has a limit as $x \rightarrow c)$
3. $\lim _{x \rightarrow c} f(x)=f(c)$ (the limit equals the function value)

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at $x=c$, then the following combinations are continuous at $x=c$.

1. Sums:
$f+g$
2. Differences:
$f-g$
3. Products:
$f \cdot g$
4. Constant multiples: $\quad k \cdot f$, for any number k
5. Quotients:
f / g provided $g(c) \neq 0$
6. Powers:
$f^{r / s}$, provided it is defined on an open interval containing c, where r and s are integers

EXAMPLE 6 Polynomial and Rational Functions Are Continuous

(a) Every polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ is continuous because $\lim _{x \rightarrow c} P(x)=P(c)$ by Theorem 2, Section 2.2.
(b) If $P(x)$ and $Q(x)$ are polynomials, then the rational function $P(x) / Q(x)$ is continuous wherever it is defined $(Q(c) \neq 0)$ by the Quotient Rule in Theorem 9.

EXAMPLE 7 Continuity of the Absolute Value Function

The function $f(x)=|x|$ is continuous at every value of x. If $x>0$, we have $f(x)=x$, a polynomial. If $x<0$, we have $f(x)=-x$, another polynomial. Finally, at the origin, $\lim _{x \rightarrow 0}|x|=0=|0|$.

THEOREM 10 Composite of Continuous Functions

If f is continuous at c and g is continuous at $f(c)$, then the composite $g \circ f$ is continuous at c.

EXAMPLE 8 Applying Theorems 9 and 10

Show that the following functions are continuous everywhere on their respective domains.
(a) $y=\sqrt{x^{2}-2 x-5}$
(b) $y=\frac{x^{2 / 3}}{1+x^{4}}$
(c) $y=\left|\frac{x-2}{x^{2}-2}\right|$

Example:

$$
F(x)=\left\{\begin{array}{cl}
\frac{\sin x}{x}, & x \neq 0 \\
1, & x=0
\end{array}\right.
$$

The function $F(x)$ is continuous at $x=0$ because

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=F(0)
$$

EXAMPLE 9 A Continuous Extension

Show that

$$
f(x)=\frac{x^{2}+x-6}{x^{2}-4}
$$

has a continuous extension to $x=2$, and find that extension.

THEOREM 11 The Intermediate Value Theorem for Continuous Functions
A function $y=f(x)$ that is continuous on a closed interval $[a, b]$ takes on every value between $f(a)$ and $f(b)$. In other words, if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

EXERCISES 2.6 P. 132

Continuity from Graphs

In Exercises 1-4, say whether the function graphed is continuous on $[-1,3]$. If not, where does it fail to be continuous and why?

Exercises 5-10 are about the function

$$
f(x)=\left\{\begin{array}{rlrl}
x^{2}-1, & -1 & \leq x<0 \\
2 x, & 0 & <x<1 \\
1, & x & =1 \\
-2 x+4, & 1 & <x<2 \\
0, & 2 & 2<x<3
\end{array}\right.
$$

graphed in the accompanying figure.

The graph for Exercises 5-10.
5. a. Does $f(-1)$ exist?
b. Does $\lim _{x \rightarrow-1^{+}} f(x)$ exist?
c. Does $\lim _{x \rightarrow-1^{+}} f(x)=f(-1)$?
d. Is f continuous at $x=-1$?
6. a. Does $f(1)$ exist?
b. Does $\lim _{x \rightarrow 1} f(x)$ exist?
c. Does $\lim _{x \rightarrow 1} f(x)=f(1)$?
d. Is f continuous at $x=1$?
7. a. Is f defined at $x=2$? (Look at the definition of f.)
b. Is f continuous at $x=2$?
8. At what values of x is f continuous?
9. What value should be assigned to $f(2)$ to make the extended function continuous at $x=2$?
10. To what new value should $f(1)$ be changed to remove the discontinuity?

At what points are the functions in Exercises 13-28 continuous?
13. $y=\frac{1}{x-2}-3 x$
14. $y=\frac{1}{(x+2)^{2}}+4$
15. $y=\frac{x+1}{x^{2}-4 x+3}$
16. $y=\frac{x+3}{x^{2}-3 x-10}$
17. $y=|x-1|+\sin x$
18. $y=\frac{1}{|x|+1}-\frac{x^{2}}{2}$
19. $y=\frac{\cos x}{x}$
20. $y=\frac{x+2}{\cos x}$
21. $y=\csc 2 x$
22. $y=\tan \frac{\pi x}{2}$
23. $y=\frac{x \tan x}{x^{2}+1}$
24. $y=\frac{\sqrt{x^{4}+1}}{1+\sin ^{2} x}$
25. $y=\sqrt{2 x+3}$
26. $y=\sqrt[4]{3 x-1}$
27. $y=(2 x-1)^{1 / 3}$
28. $y=(2-x)^{1 / 5}$

Continuous Extensions

35. Define $g(3)$ in a way that extends $g(x)=\left(x^{2}-9\right) /(x-3)$ to be continuous at $x=3$.
36. Define $h(2)$ in a way that extends $h(t)=\left(t^{2}+3 t-10\right) /(t-2)$ to be continuous at $t=2$.
37. Define $f(1)$ in a way that extends $f(s)=\left(s^{3}-1\right) /\left(s^{2}-1\right)$ to be continuous at $s=1$.
38. Define $g(4)$ in a way that extends $g(x)=\left(x^{2}-16\right) /$ $\left(x^{2}-3 x-4\right)$ to be continuous at $x=4$.
39. For what value of a is

$$
f(x)= \begin{cases}x^{2}-1, & x<3 \\ 2 a x, & x \geq 3\end{cases}
$$

continuous at every x ?
40. For what value of b is

$$
g(x)= \begin{cases}x, & x<-2 \\ b x^{2}, & x \geq-2\end{cases}
$$

continuous at every x ?

Tangents and Derivatives P. 134

DEFINITIONS Slope, Tangent Line

The slope of the curve $y=f(x)$ at the point $P\left(x_{0}, f\left(x_{0}\right)\right)$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \quad \text { (provided the limit exists). }
$$

The tangent line to the curve at P is the line through P with this slope.

EXAMPLE 3 Slope and Tangent to $y=1 / x, x \neq 0$
(a) Find the slope of the curve $y=1 / x$ at $x=a \neq 0$.
(b) Where does the slope equal $-1 / 4$?
(c) What happens to the tangent to the curve at the point $(a, 1 / a)$ as a changes?

In Exercises 11-18, find the slope of the function's graph at the given point. Then find an equation for the line tangent to the graph there.
11. $f(x)=x^{2}+1,(2,5) \quad$ 12. $f(x)=x-2 x^{2},(1,-1)$
13. $g(x)=\frac{x}{x-2}, \quad(3,3)$
14. $g(x)=\frac{8}{x^{2}}, \quad(2,2)$
15. $h(t)=t^{3},(2,8)$
16. $h(t)=t^{3}+3 t, \quad(1,4)$
17. $f(x)=\sqrt{x}, \quad(4,2)$
18. $f(x)=\sqrt{x+1},(8,3)$

The Derivative as a Function

DEFINITION Derivative Function

The derivative of the function $f(x)$ with respect to the variable x is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided the limit exists.

EXAMPLE 1 Applying the Definition

Differentiate $f(x)=\frac{x}{x-1}$.

EXAMPLE 2 Derivative of the Square Root Function

(a) Find the derivative of $y=\sqrt{x}$ for $x>0$.
(b) Find the tangent line to the curve $y=\sqrt{x}$ at $x=4$.

Notation.

All the following symbols are the same meaning
$f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D(f)(x)=D_{x} f(x)$.
EXAMPLE $5 \quad y=|x|$ Is Not Differentiable at the Origin
Show that the function $y=|x|$ is differentiable on $(-\infty, 0)$ and $(0, \infty)$ but has no derivative at $x=0$.

$$
\text { EXAMPLE } 6 \quad y=\sqrt{x} \text { Is Not Differentiable at } x=0
$$

THEOREM 1 Differentiability Implies Continuity

If f has a derivative at $x=c$, then f is continuous at $x=c$.

